Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems.

نویسندگان

  • Alberto Ambrosetti
  • Dario Alfè
  • Robert A DiStasio
  • Alexandre Tkatchenko
چکیده

Noncovalent interactions are ubiquitous in molecular and condensed-phase environments, and hence a reliable theoretical description of these fundamental interactions could pave the way toward a more complete understanding of the microscopic underpinnings for a diverse set of systems in chemistry and biology. In this work, we demonstrate that recent algorithmic advances coupled to the availability of large-scale computational resources make the stochastic quantum Monte Carlo approach to solving the Schrödinger equation an optimal contender for attaining "chemical accuracy" (1 kcal/mol) in the binding energies of supramolecular complexes of chemical relevance. To illustrate this point, we considered a select set of seven host-guest complexes, representing the spectrum of noncovalent interactions, including dispersion or van der Waals forces, π-π stacking, hydrogen bonding, hydrophobic interactions, and electrostatic (ion-dipole) attraction. A detailed analysis of the interaction energies reveals that a complete theoretical description necessitates treatment of terms well beyond the standard London and Axilrod-Teller contributions to the van der Waals dispersion energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PFIH-Based Heuristic for Green Routing Problem with Hard Time Windows

Transportation sector generates a considerable part of each nation's gross domestic product and considered among the largest consumers of oil products in the world. This paper proposes a heuristic method for the vehicle routing problem with hard time windows while incorporating the costs of fuel, driver, and vehicle. The proposed heuristic uses a novel speed optimization algorithm to reach its ...

متن کامل

A Hard Convex Core Yukawa Equation of State for Nonassociated Chain Molecules

The compressibility factor of nonassociated chain molecules composed of hard convex core Yukawa segments was derived with SAFT-VR and an extension of the Barker-Henderson perturbation theory for convex bodies. The temperature-dependent chain and dispersion compressibility factors were derived using the Yukawa potential. The effects of temperature, packing fraction, and segment number on the com...

متن کامل

Compression, supramolecular organization and free radical polymerization of ethylene gas

At low pressure, ethylene gas consists of single translating and rotating molecules and behaves as an ideal gas. With decrease of free volume by compression, various rotating supramolecular particles are formed, which require less space for the movement: molecular pairs, bimolecules and oligomolecules. The appearance of a new kind of particles is manifested as a phase transition of the second o...

متن کامل

RECENT ADVANCES IN MOLECULAR BIOLOGY An introduction to biomolecular simulations and docking

The biomolecules in and around a living cell – proteins, nucleic acids, lipids and carbohydrates – continuously sample myriad conformational states that are thermally accessible at physiological temperatures. Simultaneously, a given biomolecule also samples (and is sampled by) a rapidly fluctuating local environment comprising other biopolymers, small molecules, water, ions, etc. that diffuse t...

متن کامل

An Introduction to Biomolecular Simulations and Docking

The biomolecules in and around a living cell – proteins, nucleic acids, lipids, carbohydrates – continuously sample myriad conformational states that are thermally accessible at physiological temperatures. Simultaneously, a given biomolecule also samples (and is sampled by) a rapidly fluctuating local environment comprised of other biopolymers, small molecules, water, ions, etc. that diffuse to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 2014